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We consider few-electron concentric double quantum rings with parabolic confining potential and compare
the ground-state energies calculated by exact diagonalization of the Hamiltonian, accurate quantum Monte
Carlo, and local spin-density functional approaches. Electronic localization in one of the rings and the forma-
tion of rotating Wigner molecules is shown, respectively, from the one-body and the two-body density opera-
tors. As the confinement strength of the outer ring is finely increased, the circularly symmetric electron density
exhibits a radial crossover from this ring to the inner one without altering the angular character of the system.
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I. INTRODUCTION

Double quantum rings are natural follow-ups of structures
such as quantum dots (QDs) and quantum rings (QRs),
which have been the subject of intense both theoretical and
experimental studies for the past ten years, see, e.g., Refs.
1-5 and references therein. All these structures are character-
ized by Coulombic correlations enhanced by electron densi-
ties much lower than those of their natural counterparts, i.e.,
electrons confined in atoms. Here we consider concentric
double quantum rings (CDQRs) (Refs. 6-8) containing N
=2—-4 electrons and, owing to their formal resemblance—both
kinds of systems have a central potential, we adopt the
atomic jargon by referring to the two-, three- and four-
electron systems as helium, lithium, and beryllium CDQRs,
respectively.

As an important difference with respect to atoms, QDs
may show a wealth of properties (energy spectrum,’ total
spin,'® electron localization,'!? conductance, etc.) that are
tunable by the variation of a set of experimentally control-
lable parameters such as the shape, the depth and the size of
the external confinement, the number and the density of the
electrons, the presence of impurities'>!'* or the intensity of an
external magnetic or electric field, making them a promising
playground for the development of nanotechnological de-
vices. Similar properties are displayed by QRs (Ref. 15) and
coupled systems such as QD-QD,'® QR-QR,'” or QD-QR
(Ref. 18) pairs, in which case the set of tunable parameters is
further expanded, since one can change the size, shape, and
position of the constituents relative to each other.

Being strictly connected to the strength of the electronic
correlations, a correct description of these properties cru-
cially depends on the accurate theoretical treatment of the
underlying many-body problem. To this end, in the investi-
gations described here we make use of an up-to-date quan-
tum Monte Carlo (QMC) approach and compare the obtained
results with those calculated within a local spin-density ap-
proximation (LSDA) one and with exact diagonalization
(ED) techniques. QMC is known for having been able to
provide benchmark results for a variety of systems,'® al-
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though in the fermionic case they are affected by the fermion
node problem,”” which can be, in turn, systematically
reduced.”! The LSDA has also established itself as the stan-
dard tool for atomic-scale simulations and has been proved
to satisfactorily describe from few- to many-electron QDs,
QRs, and CDQRs.*>22 ED essentially allows for the exact
solution of the Schrodinger equation, but it is practically fea-
sible only for systems with a small number of particles.??

We have calculated the ground-state (g.s.) energy for fixed
radii of the rings and various strengths of the external con-
finement, as well as the ordinary—one-body— and two-body
densities. The latter is also often referred to as’*>
conditional-probability distribution (CPD) and represents a
fundamental tool to reveal crystallization in the system when
measured from the intrinsic frame of reference—i.e., from
the position of one of the electrons. Indeed, it may happen
that this quantity shows accumulation of electronic density in
specific spots of the system whereas from the outside—
laboratory frame—the ring presents rotational symmetry via
the one-body density. We have adopted a variational Monte
Carlo (VMC) method in which the trial wave function is
carefully optimized with respect to the energy rather than to
the energy variance,”?° thus providing a very accurately
chosen sample of configurations for the subsequent diffusion
Monte Carlo (DMC) study; Sec. I summarizes the theoreti-
cal model; Sec. III presents overall results that are then com-
mented in depth in subsections for each case of study and,
finally, in Sec. IV we draw some conclusions as well as some
anticipations of further studies.

II. CDQR MODEL

We consider N electrons confined in the two-dimensional
quantum well formed at the interface of a semiconductor
GaAs/AlGaAs heterostructure, and further confined by a
double harmonic central potential'®?” with the two minima
located at distances R;, and R, from the origin and confine-
ment strengths w;, and w,,, namely,
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FIG. 1. Solid line: cross section of the circularly symmetric
potential (Ri;=60 nm, Rouy=90 nm, w;p=35 meV,

®ou=36 meV). Dashed line: The VMC-calculated density profile
(for N=3). The y axis is in arbitrary units, x axis in nm.
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(1)

m™ being the effective electron mass. This confining potential
is shown in Fig. 1 as a function of r, together with the den-
sity profile, calculated by VMC, corresponding to one of the
studied configurations with N=3.

The Hamiltonian reads

E pl cont(rz) + 2

i=1 2m i<j E|l' rjl

(2)

where p; and r; are, respectively, the momentum and position
of the ith electron. We adopt millielectronvolts (meV) and
nanometers (nm) for the quantification of the confinement’s
strength and radii, whereas for the ground-state energies and
density-distribution radii we employ effective atomic units.
We take the effective mass m*=0.067 and dielectric constant
€=12.4 values of bulk GaAs. In effective atomic units %
=¢?/e=m=1, which yields for the effective Hartree and
Bohr radius the values H*=11.86 meV and a,=9.79 nm,
respectively.

III. RESULTS

We have studied systems with N=2, 3, and 4 interacting
electrons in a geometry with fixed parameters R;,=60 nm,
R,,=90 nm, and wm—35 meV, and with variable w,,. The
usual parameter r,=1/\7mn (in aj units), n being the electron
density, has been used in order to characterize the systems
under study, ranging from 2.5 to 4.3, i.e., values well below
both the typical ones at which Wigner crystallization appears
in the two-dimensional electron gas (r, about 37, Ref. 28)
and in QDs (r, about 20, Ref. 11).

Concerning the QMC calculation, the employed trial
wave functions have been obtained after accurate cycles of
energy-optimized VMC runs and contain the usual determi-
nantal part, accounting for the total antisymmetry required
by fermion systems and a Jastrow factor which includes the
two- and three-body correlations. Only the parameters con-
tained in the Jastrow part underwent the optimization proce-
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dure. This turned out to be sufficient to guarantee a good
convergence of DMC energies to ED ones. In order to retain
the symmetry with respect to the spin, the determinants (one
for spin-up and another for spin-down electrons) are made up
of single-particle (sp) orbitals obtained from a local-density
approximation (LDA) calculation. For details on the form of
the wave function and on the optimization algorithm, see
Umrigar et al.?! and references therein. The DMC results are
obtained by long runs repeated by varying both the time step
(6r=0.05, 0.035, 0.02, and 0.01) and the number of walkers
(Nwae=100, 200, 300, and 400) in order to extrapolate the
ground-state energy quadratically for 6t — 0 and linearly for
1/Nyac— 0. DMC two-body densities have been obtained by
collecting relative distributions of electrons on a mesh of a
set of at least 500 000 configurations sampled from the ulti-
mate distribution to which the algorithm converges in the
limit of long simulation times.

Finally, for the exact diagonalization we have performed
configuration interaction calculations building the Slater de-
terminants from LSDA single-particle orbitals instead of,
e.g., Fock-Darwin states in order to ensure a better
convergence.?” Such sp states are written in the usual form
o, ) =11,,(r)e with n=0,1,2,..., [
=0,*1,*2,..., —I being the projection of the sp orbital
angular momentum on the z axis and o=+1/2(-1/2) refer-
ring to spin-up (-down) states. Thus, the many-body wave
function with given total z component of the spin S, and
angular momentum L,=X/;, Vg Ly is expressed as a hnear
combination of Slater determinants CD? L namely, V¥ S.L.
=3,c (I>§‘ L We have considered large numbers of conﬁgu—

rations (a’s up to 500 000) checking that the obtained
ground-state energies tend asymptotically to the value that
would correspond to the limit a=cc. The integrals entering
the calculation of the Coulomb matrix elements have been
performed using a step of 1=0.02 aj, and to solve the secu-
lar equation (H- E; SZ)\PS £.=0, where T is the identity
matrix, we have used the Lanczos package ARPACK,*® which
was designed to address eigenvalue problems dealing with
large sparse matrices.

For all the CDQR configurations presented here, the one-
body density shows azimuthally delocalized and radially lo-
calized electrons. On the two-body density level of investi-
gation, the electrons are localized, giving rise to a unique,
intrinsic angular modulation of the particle densities, analo-
gous to the rotating electron molecules found in boson
traps.>* Concerning the ground-state energy estimations,
DMC and ED show a good agreement. DMC and ED one-
body and two-body densities result practically indistinguish-
able: in most cases this convergence is fully quantitative,
while in some cases (for values of w,, in the crossover re-
gion) it is only qualitative, with the two methods yielding the
same shape but different relative heights of the density
peaks. Nevertheless, for the sake of clarity, only DMC den-
sities are reported in all figures. On the contrary, as it is
expected and well known, the LSDA overestimates the cor-
relation energy. This, as we shall see, is clearly manifested as
a difference between the LSDA and the DMC/ED energies
and densities that is enhanced for the lowest values of the
density, i.e., for the situations with the smallest number of
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TABLE I. Comparison of the ground-state energies of the he-
lium CDQR corresponding to different values of the confinement of
the outer ring. The uppercase labels “IN” and “OUT” indicate the
ring in which the electrons are mostly localized.

Wout

(meV) LSDA (H*) VMC (H*) DMC (H") ED (H")
35.15 (IN) 2.9499 3.04694(9)  3.0113(5) 3.0213
35.14 (OUT) 2.9035 3.0309(1) 3.0222(1) 3.0209

electrons and increasing when they are localized in the outer
ring.

A. N=2 (helium) CDQR

We have first investigated the electron localization in a
CDQR containing two electrons as a function of the variable
confinement strength of the outer ring. As shown below, the
QMC (DMC) results are very close to the ED ones, the dis-
crepancy being on the order of 1 to 10 mH™ and thus in good
agreement with analogous comparisons performed on same-
scale systems,?>3! whereas they differ significantly from
those obtained within the LDA, which in this case coincide
with the LSDA ones since the two electrons pair as a singlet,
as expected.’> We also point out that for this system, charac-
terized by a zero total spin, the space part of the wave func-
tion has to be symmetric, thus implying that the DMC algo-
rithm converges to the exact ground state energy within the
statistical error, therefore resulting in a reliability test of the
ED approach. Table I shows the calculated ground-state en-
ergies, and one can see that the LSDA ones are systemati-
cally lower than those given by QMC, the latter being an
upper bound. The difference between the two approaches is
fundamentally related to the non-variational nature and the
above-mentioned overestimation of the correlation energy in
the density-functional approach. Such difference increases
from a 3% to a 4.3% of the total DMC energy as the density
reduces (i.e., as the correlations become more important),
which corresponds to the electrons moving from the inner
ring (w,, =40 meV) to the outer one (wy, =30 meV). The
corresponding electron density profiles are shown in Fig. 2,
where also remarkable differences between the different cal-
culations can be observed. Indeed, one can see that whereas
both in the LDA and in the VMC ones a sudden crossover
from the situation in which the two electrons are completely
localized in the outer ring to that in which they are in the
inner ring takes place as the strength of the confinement of
the outer ring is increased from w,,=35.14 meV to 35.15
meV, such transition is more continuous in the DMC calcu-
lation. It could also be interpreted as an artifact of the LDA
and the VMC approaches due to the abrupter character
shown in these calculations. The sudden crossover is some-
what a drawback of the LDA and the VMC due to a poorer
description of electron-electron correlations. DMC cures this
shortcoming, producing a smoother transition from one ring
to the other. Figure 3 displays how does the magnetization
p(r,7)=p(r,]) of the CDQR vary as the displacement of the
electronic density to the outer ring becomes energetically
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Total one-body density
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FIG. 2. Comparison of electron densities of the CDQR with N
=2 calculated within the LDA and the QMC approaches. The posi-
tion of the peaks on the x axis is given in ag and the value of the
total energy is indicated in each plot; the y axis is in arbitrary units.
w,, indicates the confinement’s strength of the outer ring.

N

35.62 2.95(1)

K

—

20 2.47964(3)

favorable when the confinement’s strength w,,, is finely re-
duced, indicating that the crossover of the total density be-
gins by a slight separation of the two spin-resolved one-body
densities. The amount by which the two densities differ on
each ring is about 10% of the total density for w,,=35.62
and decreases as the confinement’s strength is lowered and
both electrons can be fully allotted in the same, outer ring.
This effect is not present in the LSDA results, suggesting that
it is due to subtle correlations between the electrons which
can be correctly treated only by exact methods (DMC and/or
ED). The IN-OUT transition is displayed in a more detailed
way in Figs. 4 and 5, where the one- and two-body densities
and the relative angular localization of the electrons corre-
sponding to the two configurations discussed in Table I are
shown for the VMC and the DMC approaches, respectively.
The latter yields a more continuous redistribution process of
the electron density between the two constituent rings as the

[ i magnetization
Dput = 35.62 meV » g{‘ ﬁ =i
iR p (up) - p (down)
L Y
H

i

{

4 Doyt = 35.15 meV

! ! ! | | | |

6 9

FIG. 3. DMC-calculated magnetization for CDQR with N=2 as
a function of the radius (x axis in ap, y axis in arbitrary units). @y,
indicates the confinement’s strength of the outer ring.
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relative angular

one-body density
distribution (rad)

two-body density

Ojp =35 meV
@ out = 35.14 meV

Min=35meV =
Mout =35.15meV =

FIG. 4. VMC results for the helium CDQR. Top panels: @y,
=35.14 meV; Bottom panels: w,,=35.15 meV. Left: one-body
density; center: two-body density, the dots indicating the position of
the reference electron; right: relative angular distribution in arbi-
trary units (x axis in radians).

critical w,, is reached, as it is illustrated in the left panels of
both figures. The central panel shows the two-body density
p(r,ry), i.e., the conditional probability of finding the second
electron at the position r when the first electron is fixed at ry;
a more quantitative information is presented in the right
panel, where the displacement probability of the second elec-
tron with respect to the first one is shown as a function of the
angle formed by the position vector of the two electrons. It
can be seen that the particles are preferably located forming
a relative angle of 180° to minimize the Coulomb energy.

B. N=3 (lithium) CDQR

We must recall here a general remark: ED and LSDA
results on one side, and QMC ones on the other, cannot be
strictly compared due to the fact that while QMC can treat

eigenstates of S, LSDA and our ED algorithm are limited to

eigenstates of .§'Z. As a consequence, e.g., the state with ei-
genvalue §,=0 resulting from an ED or LSDA calculation is
a mixture of the S=0 and S=1 states. To build proper VMC
projection functions and DMC trial wave functions by using
LDA states we made use of the Dirac identity (see e.g., Col-
letti et al. in Ref. 10). The ground-state energies for the N
=3 CDQR are shown in Table II. For the inter-ring separa-
tions we have explored, the ground state of the system is
found to be fully spin-polarized, i.e., S=3/2 by QMC and
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FIG. 5. Same as Fig. 4 for the DMC calculation.

S,=3/2 by LSDA, in agreement with Herring,> Usukura et
al.333* and Mikhailov,?® whereas ED yields S,=1/2. To al-
low a thorough comparison and a check of the validity of
Hund’s (first) rule in CDQRs, we calculated in one case
(0o ;=40 meV) the QMC energy for the state with S=1/2,
which results by a 0.3% higher than the ground-state energy.
Ground-state energy differences between the results given by
the ED and the QMC calculations are of the order of
3-5 mH". The LSDA overestimation of the correlation en-
ergy increases in this case from a 1.8% to a 5% of the total
DMC energy as the density reduces when the electrons move
from the inner ring (w,,=40 meV) to the outer one (wyy,
=34 meV). In analogy with the findings for N=2, as the
outer confinement strength is increased the electron density
appears to sharply crossover from the outer to the inner ring
in the LSDA and in the VMC calculation, whereas the DMC
one yields a smoothed out transition as before, as shown in
Fig. 6. It must be noticed that for w,,;=35.5 meV the LSDA
yields a configuration with the three electrons localized in
the inner ring whereas in the QMC calculation (both in VMC
and DMC) they are mostly in the outer one. The relative
angular distribution and the two-body density correlation
function are shown in Fig. 7, from where one can see that in
this case the electrons tend to localize forming an equilateral
triangle within the CDQR—i.e., at relative angles of around
120°—regardless of whether they are in the inner ring or in
the outer one. This character of the two-body density, which
essentially represents a symmetry breaking of the density in
the intrinsic, rotating, frame can be interpreted as the mo-
lecular counterpart of the Wigner crystallization occurring in

TABLE II. Same as Table I for the lithium (N=3) CDQR. For the particular case wy,=35.5 meV the
label “IN” corresponds to the LSDA calculation, and the label “OUT” to the QMC one. Comparison of first
and last row suggests that electrons in a CDQR structure obey Hund’s (first) rule.

@t LSDA (H*) VMC (H*) DMC (H) ED (HY)
(meV) 5,=3/2 5=3/2 5=3/2 S,=1/2
40 (IN) 4.681 4.76603(7) 4.76482(8) 4.7681
36 (IN) 4.567 4.7743(1) 4.7441(5) 4.7488
35.5 (IN/OUT) 4.5668(1) 4.7111(1) 4.6989(5) 4.7042
35.495 (OUT) 4.4746 4.7104(1) 4.6932(9) 4.7031
34 (OUT) 4291 4.5213(5) 4.51695(8) 4.5198
40 (IN) S=1/2 4.7825(9) S=1/2 4.7692(1)
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Total one-body density
(g.s. energy, H*

o  (mey) LSPA

out
40 4.681
36 / \4.567

| 456681
35.5 p )

)
VMC DMC
/14.76603(7) J@sz(s)
4.7111(1) J 4M
6
4.6932(9
35495  _4.4746 4M y(l/\‘
J 4M 4@
34 4291 ) ®), ®),

FIG. 6. Same as Fig. 2 for the lithium (N=3) CDQR.

low-density electron systems!' and by analogy such azi-

muthal modulation can be referred to as a Wigner molecule.
One should also notice differences with what could be inter-
preted at first sight as the appearance in the system of the
so-called charge-(CDWs) and spin-density waves (SDWs)
found in quantum dots,3® which involve the one-body rather
than the two-body density, but in which the number of
humps does not coincide with the number of particles.>” This
may lead one into considering the CDWs as having a physi-
cal nature different from that of the Wigner (ordinary or mo-
lecular) crystallization; such SDWs have been considered by
some authors as an artifact of the LSDA.38

C. N=4 (beryllium) CDQR

Also for N=4 a thorough comparison between ED and
QMC results is limited by the multiplicity of S, with respect
to S. The energies for the N=4 system in the ED- and LSDA
[L=0,5,=0] state and QMC [L=0,5=0] are shown in Table
III. As we explain below, this configuration is found to be the
ground state from the ED calculation, but not from the
LSDA and the QMC ones. Discrepancies between ED and
QMC are of the same order as in the previous cases (I to
12 mH?), thus remaining within the range found for QDs by
other authors.?*3! For the CDQRs with the largest number of

relative angular

one-body density two-body density

distribution (rad)
@ jn = 35 meV i
O out =40 meV 1 2 3
Oin =35 meV A
W out =36 meV 1 2 3

FIG. 7. Same as Fig. 5 for the CDQR with N=3. Top panels:
Wo=40 meV; bottom panels: w,,=36 meV.
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TABLE III. Same as Table I for the beryllium (N=4) CDQR.
Energies refer to the [L=0,5.=0] state for LSDA and ED, and to
the [L=0,S8=0] state for VMC and DMC.

Woyt

(meV) LSDA (H*) VMC (H*) DMC (H*) ED (H")
40 (IN) 6.6080(1) 6.721(4) 6.66199(2) 6.6628
37.5 (IN) 6.4461(1) 6.759(2) 6.6714(10) 6.6595
35 (OUT) 6.2408(1) 6.4179(5) 6.3868(5) 6.3897

electrons considered, we have found that the LSDA overes-
timates the correlation energy by a percentage that increases
from a 0.8% to a 2.2% of the total DMC energy as the
density reduces with the particles moving from the inner
(0o =40 meV) to the outer ring (wy, =35 meV), in agree-
ment with the results obtained in the previous subsections. It
should be noticed that, as anticipated above, this overestima-
tion clearly shows a tendency to decrease as N increases,
which illustrates the well-known fact that the LSDA is less
reliable for systems containing a very small number of par-
ticles. Figure 8 shows the comparison between the radial
densities calculated within the LSDA and the QMC ap-
proaches. Indeed, one can see that the LSDA densities re-
semble more the QMC ones than in the previous (N=2 and
3) cases, showing now a smoother transition of the radial
electronic distribution from the inner to the outer ring. For
the [L=0,5=0] case we have calculated the DMC spin-
dependent two-body density p(r,,r,), which represents the
conditional probability of finding a spin-o electron at the
position r provided that a spin-g’ electron is fixed at the
position ry. One-body and two-body spin-dependent densi-
ties are shown in Fig. 9. Clear peaks can be observed, show-
ing that like-spin electrons tend to be distributed in the rings
forming a 7/2 rad angle, whereas antiparallel-spin particles
tend to arrange in opposite positions (i.e., forming a 7 rad
angle) though obviously they can also form a 77/2 rad angle
since N=4. Hence, the electrons are distributed in an up-up-
down-down sequence along the ring, yielding a ground state
formed by two like-spin and two antiparallel-spin nearest-
neighbor pairs. This picture is confirmed by Fig. 10, in which
the angular modulations corresponding to the panels of Fig.

Total one-body density
(g.s. energy, H*)

LSDA VMC

DMC
40 6.721(4) / \6.66199(2)
(\ 6.5562(1) {\
7E 6.759(2) 6.671(2)
" f\ 6.647(2)
H ”6.49801(1) 6.725(4)
36.8
64108(1)’\ 6.622(4); A 6.5635(7)”
36 6 6 6
6.3868(5)“
9

- 6.2408(1) /q\\ 6.4179(5) A
FIG. 8. Same as Fig. 2 for the CDQR with N=4.

Oout (meV)

6.6080(1)

9
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density

P (up, up) p (up, down)

®out (meV)

40

375

35

FIG. 9. DMC results for the beryllium CDQR (N=4). Top pan-
els: Wy, =40 meV; middle panels: w,,;=37.5 meV; bottom panels:
Wy =35 meV. Left: one-body density; center: two-body density
p(rysry), right: two-body density p(ry,r|). The dots indicate the
position of the reference electron.

9 are shown. For this system we have also calculated the
DMC spin-dependent three-body distribution function
p(rg,r157,7241), Which gives the conditional probability of
finding a spin-o electron at the position r provided that two
spin-o” electrons are fixed at the positions r; and r, (it can
also be interpreted as a double conditional probability). The
obtained results for P(rl,rm,rzw) are shown in Fig. 11 after
selecting, among over 10 million configurations sampled by
the final DMC distribution, those with two like-spin elec-
trons falling in predefinite positions and gathering the statis-
tics over the relative ones of the remaining two particles.
As previously mentioned, the exact diagonalization yields
a ground state with zero total-spin third component S,
whereas the QMC and LSDA calculations predict a beryl-
lium CDQR ground state, respectively, with S=1 and S,=1.
For LSDA, this can be seen from Fig. 12, in which we show
the corresponding single-particle energy levels. However, we
want to stress that the LSDA energy difference between the
S,=2 and S,=1 configurations is about 0.06%, thus both be-

any-any antiparallel spins

parallel spins
© out (meV)

0 [ N\_/] /\

/ J N
375 AN S]
v j/\/

I AN | | -
V|

2 3 1

w

FIG. 10. Angular modulation of the density (arbitrary units) for
the system with N=4 as a function of the relative angular distribu-
tion in radians. The dashed line shows the angular distribution of
the one-body density, in arbitrary units but at the same scale as the
angular modulations.
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Three-body correlation function

Dout = 37.5 meV

(density: IN)

Dput =35 meV

(density: OUT)

FIG. 11. Three-body correlation function for the beryllium
CDQR; the dots show the positions of the two spin-up reference
electrons.

ing almost degenerate. Analogously, considering the results
of Table IV, the QMC energies for the states [L=0,S=0] and
[L=0,S=1] differ only by 0.01% to 0.2%, indicating a near
degeneracy. This picture is corroborated by the one- and two-
body densities and the angular modulation profiles for [L
=0,5=1] (not reported here), which look qualitatively the
same as those shown for [L=0,5=0].

It is worth pointing out that for the beryllium CDQR r,
ranges between 2 and 3 (r,=2.5 when the four electrons are
in the inner ring and r,=3 when they are in the outer one).
Such values are remarkably small as compared to those at
which Wigner crystallization appears in the bulk system?®
and in quantum dots (near 20 for spin-polarized electrons'!).
This fact can be justified on the basis that the external po-
tential used for CDQRs has a lower symmetry than the one
used for QDs, therefore it favors the localization of the par-
ticles, as it generally happens for other low-dimensional
electronic arrangements (see, e.g., Ref. 39).

IV. SUMMARY AND OUTLOOK

In this paper we have provided a systematic analysis and
comparison of the ground-state energies of CDQRs contain-
ing N=2-4 electrons using quantum Monte Carlo, local
spin-density approximation, and exact diagonalization meth-

2.4% 3
N=4
v ® =37.5meV v
out
*E 2.24- v v 4
vb v v
- A
L A v o v N
Wy A Ay
2y &, i 7
v R v
‘ L3 L3
7 7
18 I I | . I

IS
[y}
~Oo- >4
[ )
~

FIG. 12. Single-particle energy levels (in H* units) of the LSDA
calculation for the beryllium CDQR with w,,=37.5 meV. Up
(down) triangles represent spin-up (down) states, the solid (open)
ones corresponding to orbitals with principal quantum number n
=0 (n=1). The horizontal line indicates the Fermi energy.
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TABLE IV. QMC energies for the beryllium (N=4) CDQR in
the [L=0,5=1] state. Comparison with corresponding energies of
Table III indicates that the ground state has S=1, thus obeying
Hund’s (first) rule.

Wout

(meV) VMC (H") DMC (H)
40 (IN) 6.7214(10) 6.6577(3)
37.5 (IN) 6.744(3) 6.6567(2)
35 (OUT) 6.4124(9) 6.3861(8)

ods. Also, the one-, two- and three-body densities have been
calculated in order to assess the occurrence of Wigner crys-
tallization in the intrinsic frame of reference of the systems.
The results obtained by quantum Monte Carlo and the exact
diagonalization show a substantial agreement, ruling out the
possibility that the features observed might be attributed to
artifacts of the calculations.

Due to the chosen external potential and the small number
of electrons, we have found that for all the studied cases, the
electrons are mostly localized in one of the two rings, show-
ing a clear tendency to arrange themselves with a relative

PHYSICAL REVIEW B 79, 125315 (2009)

angular modulation, as well as a finely tunable crossover of
the density from one ring to the other without altering the
rotating Wigner-molecule character of the system revealed
by the two-body density, thus proving that the electrons are
relatively localized even for the considered values of r,,
which are as small as 2.5. The crossover effect can be further
studied, in particular adding a magnetic field perpendicular
to the CDQR,? whose tunability can be experimentally pro-
duced more easily than acting on the external confinement,
and which can act as a crossover switch. We have already
verified this possibility within LSDA. This might eventually
be seen as a controllable quantum behavior worthwhile for
nanoelectronic applications.
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